I am trying to fill none values in a Pandas dataframe with 0's for only some subset of columns.
When I do:
import pandas as pd
df = pd.DataFrame(data={'a':[1,2,3,None],'b':[4,5,None,6],'c':[None,None,7,8]})
print df
df.fillna(value=0, inplace=True)
print df
The output:
     a    b    c
0  1.0  4.0  NaN
1  2.0  5.0  NaN
2  3.0  NaN  7.0
3  NaN  6.0  8.0
     a    b    c
0  1.0  4.0  0.0
1  2.0  5.0  0.0
2  3.0  0.0  7.0
3  0.0  6.0  8.0
It replaces every None with 0's. What I want to do is, only replace Nones in columns a and b, but not c.
What is the best way of doing this?
 
     
     
     
     
     
     
     
     
     
     
     
    