Your x is 3x2:
In [379]: x
Out[379]: 
array([[1, 2],
       [2, 3],
       [3, 4]])
Make a 3 element boolean mask:
In [380]: rowmask=np.array([False,False,True])
That can be used to select the rows where it is True, or where it is False.  In both cases the result is 2d:
In [381]: x[rowmask,:]
Out[381]: array([[3, 4]])
In [382]: x[~rowmask,:]
Out[382]: 
array([[1, 2],
       [2, 3]])
This is without using the MaskedArray subclass.  To make such array, we need a mask that matches x in shape.  There isn't provision for masking just one dimension.
In [393]: xmask=np.stack((rowmask,rowmask),-1)  # column stack
In [394]: xmask
Out[394]: 
array([[False, False],
       [False, False],
       [ True,  True]], dtype=bool)
In [395]: np.ma.MaskedArray(x,xmask)
Out[395]: 
masked_array(data =
 [[1 2]
 [2 3]
 [-- --]],
             mask =
 [[False False]
 [False False]
 [ True  True]],
       fill_value = 999999)
Applying compressed to that produces a raveled array: array([1, 2, 2, 3])
Since masking is element by element, it could mask one element in row 1, 2 in row 2 etc.  So in general compressing, removing the masked elements, will not yield a 2d array.  The flattened form is the only general choice.
np.ma makes most sense when there's a scattering of masked values.  It isn't of much value if you want want to select, or deselect, whole rows or columns.
===============
Here are more typical masked arrays:
In [403]: np.ma.masked_inside(x,2,3)
Out[403]: 
masked_array(data =
 [[1 --]
 [-- --]
 [-- 4]],
             mask =
 [[False  True]
 [ True  True]
 [ True False]],
       fill_value = 999999)
In [404]: np.ma.masked_equal(x,2)
Out[404]: 
masked_array(data =
 [[1 --]
 [-- 3]
 [3 4]],
             mask =
 [[False  True]
 [ True False]
 [False False]],
       fill_value = 2)
In [406]: np.ma.masked_outside(x,2,3)
Out[406]: 
masked_array(data =
 [[-- 2]
 [2 3]
 [3 --]],
             mask =
 [[ True False]
 [False False]
 [False  True]],
       fill_value = 999999)