I need to generate all permutation of a string with selecting some of the elements. Like if my string is "abc" output would be { a,b,c,ab,ba,ac,ca,bc,cb,abc,acb,bac,bca,cab,cba }.
I thought a basic algorithm in which I generate all possible combination of "abc" which are {a,b,c,ab,ac,bc,abc} and then permute all of them.
So is there any efficient permutation algorithm by which I can generate all possible permutation with varying size.
The code I wrote for this is :
    #include <iostream>
    #include <stdio.h>
    #include <stdlib.h>
    #include <map>
    using namespace std;
    int permuteCount = 1;
    int compare (const void * a, const void * b)
    {
      return ( *(char*)a - *(char*)b);
    }
    void permute(char *str, int start, int end)
    {
        // cout<<"before sort : "<<str;
        // cout<<"after sort : "<<str;
          do
         {
               cout<<permuteCount<<")"<<str<<endl;  
               permuteCount++;
         }while( next_permutation(str+start,str+end) );  
    }
void generateAllCombinations( char* str)
{
     int     n, k, i, j, c;
     n = strlen(str);
     map<string,int> combinationMap;
for( k =1; k<=n; k++)
{  
   char tempStr[20];
   int index =0;
   for (i=0; i<(1<<n); i++) {
        index =0;
        for (j=0,c=0; j<32; j++) if (i & (1<<j)) c++;
        if (c == k) {
        for (j=0;j<32; j++) 
            if (i & (1<<j)) 
               tempStr[ index++] = str[j];          
        tempStr[index] = '\0';
        qsort (tempStr, index, sizeof(char), compare);
        if( combinationMap.find(tempStr) == combinationMap.end() )
        {
        //  cout<<"comb : "<<tempStr<<endl;
        //cout<<"unique comb : \n";
            combinationMap[tempStr] = 1; 
            permute(tempStr,0,k);   
        }  /*
        else
        {
            cout<<"duplicated comb : "<<tempStr<<endl;
        }*/
        }
  }
}
}
    int main () {
            char str[20];
            cin>>str;
            generateAllCombinations(str);
           cin>>str;
    }
I need to use a hash for avoiding same combination, so please let me know how can I make this algorithm better.
Thanks, GG
 
    