Let us use the name A for the presented algorithm. Let us further assume that the input variable is n.
Then, strictly speaking, A is not in the runtime complexity class O(log log n). A must be in (Omega)(n), i.e. in terms of runtime complexity, it is at least linear. Why? There is i*i, a multiplication that depends on i that depends on n. A naive multiplication approach might require quadratic runtime complexity. More sophisticated approaches will reduce the exponent, but not below linear in terms of n.
For the sake of completeness, the comparison <  is also a linear operation.
For the purpose of the question, we could assume that multiplication and comparison is done in constant time. Then, we can formulate the question: How often do we have to apply the constant time operations > and * until A terminates for a given n?
Simply speaking, the multiplication reduces the effort logarithmic and the iterative application leads to a further logarithmic reduce. How can we show this? Thankfully to the simple structure of A, we can transform A to an equation that we can solve directly.
A changes i to the power of 2 and does this repeatedly. Therefore, A calculates 2^(2^k). When is 2^(2^k) = n? To solve this for k, we apply the logarithm (base 2) two times, i.e., with ignoring the bases, we get k = log log n. The < can be ignored due to the O notation.
To answer the very last part of the original question, we can also look at examples for each iteration. We can note the state of i at the end of the while loop body for each iteration of the while loop:
1: i =     4 =                                             2^2 = 2^(2^1)
2: i =    16 =     4*4 =                           (2^2)*(2^2) = 2^(2^2)
3: i =   256 =   16*16 =         4*4 = (2^2)*(2^2)*(2^2)*(2^2) = 2^(2^3)
4: i = 65536 = 256*256 = 16*16*16*16 =                     ... = 2^(2^4)
...
k: i =                                                     ... = 2^(2^k)