junkdf:
            rev
dtime   
2015-08-03  20.45
2015-08-04  -2.57
2015-08-05  12.53
2015-08-06  -8.16
2015-08-07  -4.41
junkdf.reset_index().to_dict('rec')
[{'dtime': datetime.date(2015, 8, 3), 'rev': 20.45},
 {'dtime': datetime.date(2015, 8, 4), 'rev': -2.5699999999999994},
 {'dtime': datetime.date(2015, 8, 5), 'rev': 12.53},
 {'dtime': datetime.date(2015, 8, 6), 'rev': -8.16},
 {'dtime': datetime.date(2015, 8, 7), 'rev': -4.41}]
junkdf.set_index('dtime',inplace=True)
Why can't I do any datetime slicing like that described at:
python-pandas-dataframe-slicing-by-date-conditions
junkdf['2015-08-03':]
C:\Users\blah\Anaconda3\lib\site-packages\pandas\core\base.py in searchsorted(self, key, side, sorter)
   1112     def searchsorted(self, key, side='left', sorter=None):
   1113         # needs coercion on the key (DatetimeIndex does already)
-> 1114         return self.values.searchsorted(key, side=side, sorter=sorter)
   1115 
   1116     _shared_docs['drop_duplicates'] = (
TypeError: unorderable types: datetime.date() > str()
junkdf.ix['2015-08-03':'2015-08-06']
C:\Users\blah\Anaconda3\lib\site-packages\pandas\core\base.py in searchsorted(self, key, side, sorter)
   1112     def searchsorted(self, key, side='left', sorter=None):
   1113         # needs coercion on the key (DatetimeIndex does already)
-> 1114         return self.values.searchsorted(key, side=side, sorter=sorter)
   1115 
   1116     _shared_docs['drop_duplicates'] = (
TypeError: unorderable types: datetime.date() > str()
start = junkdf.index.searchsorted(dt.datetime(2015, 8, 4))
C:\Users\blah\Anaconda3\lib\site-packages\pandas\core\base.py in searchsorted(self, key, side, sorter)
   1112     def searchsorted(self, key, side='left', sorter=None):
   1113         # needs coercion on the key (DatetimeIndex does already)
-> 1114         return self.values.searchsorted(key, side=side, sorter=sorter)
   1115 
   1116     _shared_docs['drop_duplicates'] = (
TypeError: can't compare datetime.datetime to datetime.date))
However, the following works if I use dt.date():
start = junkdf.index.searchsorted(dt.date(2015, 8, 4))
end = junkdf.index.searchsorted(dt.date(2015, 8, 6))
junkdf.ix[start:end]
                rev
    dtime   
    2015-08-04  -2.57
    2015-08-05  12.53
UPDATE:
junkdf = df[['dtime','rev']].groupby((df.dtime).dt.date).sum().copy()
where df[['dtime','rev']] looks like:
dtime   rev
0   2015-08-03 07:59:59 -0.18
1   2015-08-03 08:59:59 -0.11
2   2015-08-03 09:59:59 -0.29
3   2015-08-03 10:59:59 -0.08
4   2015-08-03 11:59:59 0.69
UPDATE2:
I tried:
df[['dtime','rev']].head()
dtime   rev
0   2015-08-03 07:59:59 -0.18
1   2015-08-03 08:59:59 -0.11
2   2015-08-03 09:59:59 -0.29
3   2015-08-03 10:59:59 -0.08
4   2015-08-03 11:59:59 0.69
df[['dtime','rev']].groupby(pd.TimeGrouper('D', key=df.dtime)).sum()
C:\Users\blah\Anaconda3\lib\site-packages\pandas\core\generic.py in __hash__(self)
    804     def __hash__(self):
    805         raise TypeError('{0!r} objects are mutable, thus they cannot be'
--> 806                         ' hashed'.format(self.__class__.__name__))
    807 
    808     def __iter__(self):
TypeError: 'Series' objects are mutable, thus they cannot be hashed