Here is the code, output and raw csv file data, the dtypes are all object type from output, is there a way to recognize each column as string (and last column as float type)? Using Python 2.7 with miniconda.
Code,
import pandas as pd
sample=pd.read_csv('123.csv', sep=',',header=None)
print sample.dtypes
program output,
0    object
1    object
2    object
3    object
123.csv content,
c_a,c_b,c_c,c_d
hello,python,pandas,1.2
Edit 1,
sample = pd.read_csv('123.csv', header=None, skiprows=1,
    dtype={0:str, 1:str, 2:str, 3:str})
print sample.dtypes
0    object
1    object
2    object
3    object
dtype: object
Edit 2,
sample = pd.read_csv('123.csv', header=None, skiprows=1,
    dtype={0:str, 1:str, 2:str, 3:str})
sample.columns = pd.Index(data=['c_a', 'c_b', 'c_c', 'c_d'])
sample['c_d'] = sample['c_d'].astype('float32')
print sample.dtypes
c_a     object
c_b     object
c_c     object
c_d    float32
regards, Lin
 
    