I have a data frame df which looks like:
        date                    day
0 2016-01-29     value    14.108988  dtype: float64
1 2016-02-01     value    20.689517  dtype: float64
2 2016-02-02     value    52.076471  dtype: float64
3 2016-02-03     value    -1.750325  dtype: float64
4 2016-02-04     value  -158.166786  dtype: float64
My question is how do I remove the 'value' and 'dtype: float64' from each row of the dataframe so I am left with :
        date           day
0 2016-01-29     14.108988  
1 2016-02-01     20.689517  
2 2016-02-02     52.076471  
3 2016-02-03     -1.750325  
4 2016-02-04   -158.166786  
The dataframe df is filled in the following way below is the head of another dataframe called timeseriesData :
                               MTAA   \
date                                                            
2015-12-25                       NaN                       
2015-12-26                       NaN                         
2015-12-28                     41.15                       
2015-12-29                     42.27                       
2015-12-30                     42.09
I iterate through the index to get the date used in the date column of the dataframe using:
for index, row in timeseriesData.iterrows():
                day = index
the day value is created from the following perf dataframe:
perf    value
id           
0   -0.000000
1   -0.000000
2   -0.000000
3   -0.000000
4   -0.000000
5   32.048692
6   -0.000000
7   -0.000000
9   -0.000000
10 -73.147585
using:
perf.sum()
I've not seen this before and have looked for a solution but not found one.
Why do I have 'value' and the datatype and how can I remove them?
 
    