As you seem to be unable to post a representative example I will demonstrate one approach using merge with param indicator=True:
So generate some data:
In [116]:
df = pd.DataFrame(np.random.randn(5,3), columns=list('abc'))
df
Out[116]:
          a         b         c
0 -0.134933 -0.664799 -1.611790
1  1.457741  0.652709 -1.154430
2  0.534560 -0.781352  1.978084
3  0.844243 -0.234208 -2.415347
4 -0.118761 -0.287092  1.179237
take a subset:
In [118]:
df_subset=df.iloc[2:3]
df_subset
Out[118]:
         a         b         c
2  0.53456 -0.781352  1.978084
now perform a left merge with param indicator=True this will add _merge column which indicates whether the row is left_only, both or right_only (the latter won't appear in this example) and we filter the merged df to show only left_only:
In [121]:
df_new = df.merge(df_subset, how='left', indicator=True)
df_new = df_new[df_new['_merge'] == 'left_only']
df_new
Out[121]:
          a         b         c     _merge
0 -0.134933 -0.664799 -1.611790  left_only
1  1.457741  0.652709 -1.154430  left_only
3  0.844243 -0.234208 -2.415347  left_only
4 -0.118761 -0.287092  1.179237  left_only
here is the original merged df:
In [122]:
df.merge(df_subset, how='left', indicator=True)
Out[122]:
          a         b         c     _merge
0 -0.134933 -0.664799 -1.611790  left_only
1  1.457741  0.652709 -1.154430  left_only
2  0.534560 -0.781352  1.978084       both
3  0.844243 -0.234208 -2.415347  left_only
4 -0.118761 -0.287092  1.179237  left_only