From a Container class, I'd like to lock a vector of boost::mutex, each one owned by a Controlled instance (weird code design, but for MWE purpose only).
// std::vector<Controlled*> _vData;
void Container::main_method()
{
for (int i=0; i<_vData.size(); i++)
{
boost::mutex::scoped_lock my_lock(_vData.at(i)->_mutex);
this->processing(i);
}
// precondition for post_processing(): all processing() calls done
for (int i=0; i<_vData.size(); i++)
{
boost::mutex::scoped_lock my_lock(_vData.at(i)->_mutex);
this->post_processing(i);
}
}
But since processing is cpu-bound and Controlled objects are modified from elsewhere in the mean time, I'd like to simply do a cycled scoped_lock at the beginning of the main_method, in order to lock everything and asap, such as
void Container::desired_main_method()
{
for (int i=0; i<_vData.size(); i++)
{
boost::mutex::scoped_lock my_lock(_vData.at(i)->_mutex);
}
// locks destroyed here, aren't they ?
for (int i=0; i<_vData.size(); i++)
{
this->processing(i);
}
for (int i=0; i<_vData.size(); i++)
{
this->post_processing(i);
}
}
Problem is, if I understanded well the RAII idiom and the scoped_lock context, that in this way, the locks would go out of scope soon after the lock for cycle ends.
I've tried to new an array of locks at Container ctor and to delete it at its dtor, but I guess this is against the RAII idiom itself.
What did I misunderstand, or how could I refactor the whole issue?