I was reading my textbook for my computer architecture class and I came across this statement.
A second important distinction between the logical operators '
&&' and '||' versus their bit-level counterparts '&' and '|' is that the logical operators do not evaluate their second argument if the result of the expression can be determined by evaluating the first argument. Thus, for example, the expressiona && 5/awill never cause a division by zero, and the expressionp && *p++will never cause the dereferencing of a null pointer. (Computer Systems: A Programmer's Perspective by Bryant and O'Hallaron, 3rd Edition, p. 57)
My question is why do logical operators in C behave like that? Using the author's example of a && 5/a, wouldn't C need to evaluate the whole expression because && requires both predicates to be true? Without loss of generality, my same question applies to his second example.
 
     
     
     
     
    