I have 25 data frames which I need to merge and find recurrently occurring rows from all 25 data frames, For example, my data frame looks like following,
df1
chr start   end     name
1   12334   12334   AAA
1   2342    2342    SAP
2   3456    3456    SOS
3   4537    4537    ABR
df2
chr start   end     name
1   12334   12334   DSF
1   3421    3421    KSF
2   7689    7689    LUF
df3 
chr start   end     name
1   12334   12334   DSF
1   3421    3421    KSF
2   4537    4537    LUF
3   8976    8976    BAR
4   6789    6789    AIN
And In the end, I am aiming to have an output data frame like following,
chr start   end     name    Sample
1   12334   12334   AAA df1
1   12334   12334   AAA df2
1   12334   12334   AAA df3
I can get there with the following solution, By dictionary which adds all these three data frames into one bigger data frame dfs
dfs = {'df1': df1, 'df2': df2}
Then further,
common_tups = set.intersection(*[set(df[['chr', 'start', 'end']].drop_duplicates().apply(tuple, axis=1).values) for df in dfs.values()])
pd.concat([df[df[['chr', 'start', 'end']].apply(tuple, axis=1).isin(common_tups)].assign(Sample=name) for (name, df) in dfs.items()])
This gives out the resulting data frame with matching rows from all three data frames, but I have 25 data frames which I am calling as list from the directory as following,
path         = 'Fltered_vcfs/' 
files        = os.listdir(path)
results      = [os.path.join(path,i) for i in files if i.startswith('vcf_filtered')]
And so how can I show the list 'results' in the dictionary and proceed further to get the desired output. Any help or suggestions are greatly appreciated.
Thank you
 
     
    