How can I transform a pandas data frame to sklearn one-hot-encoded (dataframe / numpy array) where some columns do not require encoding?
mydf = pd.DataFrame({'Target':[0,1,0,0,1, 1,1],
                   'GroupFoo':[1,1,2,2,3,1,2],
                    'GroupBar':[2,1,1,0,3,1,2],
                    'GroupBar2':[2,1,1,0,3,1,2],
                    'SomeOtherShouldBeUnaffected':[2,1,1,0,3,1,2]})
columnsToEncode = ['GroupFoo', 'GroupBar']
Is an already label encoded data frame and I would like to only encode the columns marked by columnsToEncode? 
My problem is that I am unsure if a pd.Dataframe or the numpy array representation are better and how to re-merge the encoded part with the other one.
My attempts so far:
myEncoder = OneHotEncoder(sparse=False, handle_unknown='ignore')
myEncoder.fit(X_train)
df = pd.concat([
         df[~columnsToEncode], # select all other / numeric
        # select category to one-hot encode
         pd.Dataframe(encoder.transform(X_train[columnsToEncode]))#.toarray() # not sure what this is for
        ], axis=1).reindex_axis(X_train.columns, axis=1)
Notice: I am aware of Pandas: Get Dummies / http://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html but that does not play well in a train / test split where I require such an encoding per fold.
 
     
    