Here's a new answer to an old question, based on this Microsoft Research paper and references therein.
Note that from C11 and C++11 onwards, the semantics of div has become truncation towards zero (see [expr.mul]/4). Furthermore, for D divided by d, C++11 guarantees the following about the quotient qT and remainder rT
auto const qT = D / d;
auto const rT = D % d;
assert(D == d * qT + rT);
assert(abs(rT) < abs(d));
assert(signum(rT) == signum(D) || rT == 0);
where signum maps to -1, 0, +1, depending on whether its argument is <, ==, > than 0 (see this Q&A for source code).
With truncated division, the sign of the remainder is equal to the sign of the dividend D, i.e. -1 % 8 == -1. C++11 also provides a std::div function that returns a struct with members quot and rem according to truncated division.
There are other definitions possible, e.g. so-called floored division can be defined in terms of the builtin truncated division
auto const I = signum(rT) == -signum(d) ? 1 : 0;
auto const qF = qT - I;
auto const rF = rT + I * d;
assert(D == d * qF + rF);
assert(abs(rF) < abs(d));
assert(signum(rF) == signum(d));
With floored division, the sign of the remainder is equal to the sign of the divisor d. In languages such as Haskell and Oberon, there are builtin operators for floored division. In C++, you'd need to write a function using the above definitions.
Yet another way is Euclidean division, which can also be defined in terms of the builtin truncated division
auto const I = rT >= 0 ? 0 : (d > 0 ? 1 : -1);
auto const qE = qT - I;
auto const rE = rT + I * d;
assert(D == d * qE + rE);
assert(abs(rE) < abs(d));
assert(signum(rE) >= 0);
With Euclidean division, the sign of the remainder is always non-negative.