I have a data frame which is arranged by descending order of date.
ps1 = data.frame(userID = c(21,21,21,22,22,22,23,23,23), 
             color = c(NA,'blue','red','blue',NA,NA,'red',NA,'gold'), 
             age = c('3yrs','2yrs',NA,NA,'3yrs',NA,NA,'4yrs',NA), 
             gender = c('F',NA,'M',NA,NA,'F','F',NA,'F') 
)
I wish to impute(replace) NA values with previous values and grouped by userID In case the first row of a userID has NA then replace with the next set of values for that userid group.
I am trying to use dplyr and zoo packages something like this...but its not working
cleanedFUG <- filteredUserGroup %>%
 group_by(UserID) %>%
 mutate(Age1 = na.locf(Age), 
     Color1 = na.locf(Color), 
     Gender1 = na.locf(Gender) ) 
I need result df like this:
                      userID color  age gender
                1     21  blue 3yrs      F
                2     21  blue 2yrs      F
                3     21   red 2yrs      M
                4     22  blue 3yrs      F
                5     22  blue 3yrs      F
                6     22  blue 3yrs      F
                7     23   red 4yrs      F
                8     23   red 4yrs      F
                9     23  gold 4yrs      F
 
     
     
     
     
     
    