UPDATE: more general solution for showing N largest values for all columns:
In [393]: df
Out[393]:
a b c
0 2 9 9
1 4 8 0
2 8 6 3
3 0 8 3
4 3 6 0
In [394]: N = 2
...: pd.DataFrame([df[c].nlargest(N).values.tolist() for c in df.columns],
...: index=df.columns,
...: columns=['{}_largest'.format(i) for i in range(1, N+1)]).T
...:
Out[394]:
a b c
1_largest 8 9 9
2_largest 4 8 3
In [395]: N = 3
...: pd.DataFrame([df[c].nlargest(N).values.tolist() for c in df.columns],
...: index=df.columns,
...: columns=['{}_largest'.format(i) for i in range(1, N+1)]).T
...:
Out[395]:
a b c
1_largest 8 9 9
2_largest 4 8 3
3_largest 3 8 3
OLD answer:
I assume that you want to have 2 (or n) largest values for a single column (as you used usecols=[1]):
In [279]: df
Out[279]:
a b c
0 1 0 2
1 0 7 7
2 7 7 9
3 5 1 6
4 7 0 3
5 4 0 4
6 0 6 1
7 8 3 6
8 2 8 8
9 2 9 2
In [280]: df['a'].nlargest(2)
Out[280]:
7 8
2 7
Name: a, dtype: int32
NOTE: if your CSV file doesn't have labels (column names), you can read it this way (assuming that you want to read only second (1) and fourth (3) columns from the CSV file):
df = pd.read_csv(r'/path/to/file.csv', sep=',', usecols=[1,3],
header=None, names=['col1','col2'])