I have a large pandas dataframe with 8 columns and several NaN values:
0   1   2   3   4   5   6   7   8
1   Google, Inc. (Date 11/07/2016)  NaN     NaN     NaN     NaN     NaN     NaN     NaN     NaN
2   Apple Inc. (Date 07/01/2016)    Amazon (Date 11/01/2016)    NaN     NaN     NaN     NaN     NaN     NaN     NaN
3   IBM, Inc. (Date 11/08/2016)     NaN     NaN     NaN     NaN     NaN     NaN     NaN     NaN
4   Microsoft (Date 11/10/2016)     Google, Inc. (Date 11/10/1990)  Google, Inc. (Date 11/07/2016)  Samsung (Date 05/02/2016)   NaN     NaN     NaN     NaN     NaN
How can I flatten down it like this:
0   companies
1   Google, Inc. (Date 11/07/2016)
2   Apple Inc. (Date 07/01/2016)
3   Amazon (Date 11/01/2016)
4   IBM, Inc. (Date 11/08/2016)
5   Microsoft (Date 11/10/2016)
6   Google, Inc. (Date 11/10/1990)
7   Google, Inc. (Date 11/07/2016)
8   Samsung (Date 05/02/2016)
I read the docs and tried:
df.iloc[:,0]
The problem is that I lost information and order over the other columns. I idea of how to flat without lost data in the other cells and order?.
 
     
     
    