Like the OP's this use of linspace assumes the start is 0 for all rows.
x=np.linspace(0,1,N)[:,None]*np.arange(0,2*N,2)
(edit - this is the transpose of what I should get; either transpose it or switch the use of [:,None])
For N=3000, it's noticeably faster than @Divaker's solution.  I'm not entirely sure why.
In [132]: timeit N=3000;x=np.linspace(0,1,N)[:,None]*np.arange(0,2*N,2)
10 loops, best of 3: 91.7 ms per loop
In [133]: timeit create_ranges(np.zeros(N),np.arange(0,2*N,2),N)
1 loop, best of 3: 197 ms per loop
In [134]: def foo(N):
     ...:     D=np.ones((N,N))*np.arange(N)
     ...:     D=D/D[:,-1]
     ...:     W=np.arange(0,2*N,2)
     ...:     return (D.T*W).T
     ...: 
In [135]: timeit foo(3000)
1 loop, best of 3: 454 ms per loop
============
With starts and stops I could use:
In [201]: starts=np.array([1,4,2]); stops=np.array([6,7,8])
In [202]: x=(np.linspace(0,1,5)[:,None]*(stops-starts)+starts).T
In [203]: x
Out[203]: 
array([[ 1.  ,  2.25,  3.5 ,  4.75,  6.  ],
       [ 4.  ,  4.75,  5.5 ,  6.25,  7.  ],
       [ 2.  ,  3.5 ,  5.  ,  6.5 ,  8.  ]])
With the extra calculations that makes it a bit slower than create_ranges.
In [208]: timeit N=3000;starts=np.zeros(N);stops=np.arange(0,2*N,2);x=(np.linspace(0,1,N)[:,None]*(stops-starts)+starts).T
1 loop, best of 3: 227 ms per loop
All these solutions are just variations the idea of doing a linear interpolation between the starts and stops.