So, I currently have a dataframe that looks like:
      country   continent year lifeExp   pop     gdpPercap
       <fctr>    <fctr> <int>   <dbl>    <int>     <dbl>
1 Afghanistan      Asia  1952  28.801  8425333  779.4453
2 Afghanistan      Asia  1957  30.332  9240934  820.8530
3 Afghanistan      Asia  1962  31.997 10267083  853.1007
4 Afghanistan      Asia  1967  34.020 11537966  836.1971
5 Afghanistan      Asia  1972  36.088 13079460  739.9811
6 Afghanistan      Asia  1977  38.438 14880372  786.1134
There are 140+ countries. The years are in 5 year intervals. From 1952- 2007 I want to reshape my dataframe such that I get.
     Country   gdpPercap(1952)     gdpPercap(1957)   ...   gdpPercap(2007)
      <fctr>      <dbl>
1  Afghanistan   974.5803           ....                      ...
2      Albania  5937.0295           ...                       ...
3      Algeria  6223.3675           ...                       ...
4       Angola  4797.2313
5    Argentina 12779.3796
6    Australia 34435.3674
7      Austria 36126.4927
8      Bahrain 29796.0483
9   Bangladesh  1391.2538
10     Belgium 33692.6051
My attempt is this:
gapminder %>% #my dataframe
  filter(year >= 1952) %>%
  group_by(country) %>%
  summarise(gdpPercap = mean(gdpPercap))
OUTPUT:
        country  gdpPercap <- but this takes the mean of gdpPercap from 1952-2007
        <fctr>      <dbl>
1  Afghanistan   802.6746
2      Albania  3255.3666
3      Algeria  4426.0260
4       Angola  3607.1005
5    Argentina  8955.5538
6    Australia 19980.5956
7      Austria 20411.9163
8      Bahrain 18077.6639
9   Bangladesh   817.5588
10     Belgium 19900.7581
# ... with 132 more rows
Any ideas? PS: I'm new to R. I'm also looking at melt(). Any help will be appreciated!
 
     
     
     
    