I have a dataframe energy with missing values in some column. The missing values are represented by a string ... in the dataframe. I want to replace all these values by np.NaN
In [3]: import pandas as pd
In [4]: import numpy as np
In [7]: energy = pd.read_excel('test.xls', skiprows = 17, skip_footer = 38, parse_cols = range(2, 6), index_col = None, names = ['Country', 'ES'
   ...: , 'ESC', '% Renewable'])
In [8]: energy[(energy['ES'] == "...") | (energy['ESC'] == "...")]
Out[8]: 
                          Country   ES  ESC  % Renewable
3                  American Samoa  ...  ...     0.641026
86                           Guam  ...  ...     0.000000
150      Northern Mariana Islands  ...  ...     0.000000
210                        Tuvalu  ...  ...     0.000000
217  United States Virgin Islands  ...  ...     0.000000
To replace these values, I tried:
In [9]: energy[(energy['ES'] == "...")]['ES'] = np.NaN
/usr/local/bin/ipython:1: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  #!/usr/bin/python3
I don't understand the error and also I don't see any other way to achieve what I want to. Any ideas?
 
     
    