I have written a little script to distribute workload between 4 threads and to test whether the results stay ordered (in respect to the order of the input):
from multiprocessing import Pool
import numpy as np
import time
import random
rows = 16
columns = 1000000
vals = np.arange(rows * columns, dtype=np.int32).reshape(rows, columns)
def worker(arr):
time.sleep(random.random()) # let the process sleep a random
for idx in np.ndindex(arr.shape): # amount of time to ensure that
arr[idx] += 1 # the processes finish at different
# time steps
return arr
# create the threadpool
with Pool(4) as p:
# schedule one map/worker for each row in the original data
q = p.map(worker, [row for row in vals])
for idx, row in enumerate(q):
print("[{:0>2}]: {: >8} - {: >8}".format(idx, row[0], row[-1]))
For me this always results in:
[00]: 1 - 1000000
[01]: 1000001 - 2000000
[02]: 2000001 - 3000000
[03]: 3000001 - 4000000
[04]: 4000001 - 5000000
[05]: 5000001 - 6000000
[06]: 6000001 - 7000000
[07]: 7000001 - 8000000
[08]: 8000001 - 9000000
[09]: 9000001 - 10000000
[10]: 10000001 - 11000000
[11]: 11000001 - 12000000
[12]: 12000001 - 13000000
[13]: 13000001 - 14000000
[14]: 14000001 - 15000000
[15]: 15000001 - 16000000
Question: So, does Pool really keep the original input's order when storing the results of each map function in q?
Sidenote: I am asking this, because I need an easy way to parallelize work over several workers. In some cases the ordering is irrelevant. However, there are some cases where the results (like in q) have to be returned in the original order, because I'm using an additional reduce function that relies on ordered data.
Performance: On my machine this operation is about 4 times faster (as expected, since I have 4 cores) than normal execution on a single process. Additionally, all 4 cores are at 100% usage during the runtime.