2nd ODE to solve in MATLAB:
( (a + f(t))·d²x/dt² + (b/2 + k(t))·dx/dt ) · dx/dt - g(t) = 0
Boundary condition:
dx/dt(0) = v0
where
tis the time,xis the positiondx/dtis the velocityd2x/dt2is the accelerationa,b,v0are constantsf(t),k(t)andh(t)are KNOWN functions dependent ont(I do not write them because they are quite big)
As an example, using symbolic variables:
syms t y
%% --- Initial conditions ---
phi = 12.5e-3;
v0 = 300;
e = 3e-3;
ro = 1580;
E = 43e9;
e_r = 0.01466;
B = 0.28e-3;
%% --- Intermediate calculations ---
v_T = sqrt(((1 + e_r) * 620e6) /E) - sqrt(E/ro) * e_r;
R_T = v_T * t;
m_acc = pi * e * ro *(R_T^2);
v_L = sqrt (E/ro);
R_L = v_L * t;
z = 2 * R_L;
E_4 = B * ((e_r^2)* B * (0.9^(z/B)-1)) /(log(0.9));
E_1 = E * e * pi * e_r^2 * (-phi* (phi - 2*v_T*t)) /16;
E_2 = pi * R_T^2 * 10e9;
E_3 = pi * R_T^2 * 1e6 * e;
%% Resolution of the problem
g_t = -diff(E_1 + E_2 + E_3, t);
f(t,y)=(g_t - (pi*v_T*e*ro/2 + E_4) * y^2 /(y* (8.33e-3 + m_acc))];
fun=matlabFunction(f);
[T,Y]=ode45(fun,[0 1], v0]);
How can I rewrite this to get x as y=dx/dt? I'm new to Matlab and any help is very welcome !

