I know it's a bit late but I had a similar problem and solved it, so I thought to share the solution following the custom scale example of the matplotlib docs:
import numpy as np
import scipy.stats as stats
from matplotlib import scale as mscale
from matplotlib import transforms as mtransforms
from matplotlib.ticker import Formatter, FixedLocator
class PPFScale(mscale.ScaleBase):
    name = 'ppf'
    def __init__(self, axis, **kwargs):
        mscale.ScaleBase.__init__(self)
    def get_transform(self):
        return self.PPFTransform()
    def set_default_locators_and_formatters(self, axis):
        class VarFormatter(Formatter):
            def __call__(self, x, pos=None):
                return f'{x}'[1:]
        axis.set_major_locator(FixedLocator(np.array([.001,.01,.1,.2,.3,.4,.5,.6,.7,.8,.9,.99,.999])))
        axis.set_major_formatter(VarFormatter())
    def limit_range_for_scale(self, vmin, vmax, minpos):
        return max(vmin, 1e-6), min(vmax, 1-1e-6)
    class PPFTransform(mtransforms.Transform):
        input_dims = output_dims = 1
        def ___init__(self, thresh):
            mtransforms.Transform.__init__(self)
        def transform_non_affine(self, a):
            return stats.norm.ppf(a)
        def inverted(self):
            return PPFScale.IPPFTransform()
    class IPPFTransform(mtransforms.Transform):
        input_dims = output_dims = 1
        def transform_non_affine(self, a):
            return stats.norm.cdf(a)
        def inverted(self):
            return PPFScale.PPFTransform()
mscale.register_scale(PPFScale)
if __name__ == '__main__':
    import matplotlib.pyplot as plt
    mu, sigma = 3., 1. # mean and standard deviation
    data = np.random.lognormal(mu, sigma, 10000)
    #Make CDF
    dataSorted = np.sort(data)
    dataCdf = np.linspace(0,1,len(dataSorted))
    plt.plot(dataCdf, dataSorted)
    plt.gca().set_xscale('ppf')
    plt.gca().set_yscale('log')
    plt.xlabel('probability')
    plt.ylabel('value')
    plt.xlim(0.001,0.999)
    plt.grid()
    plt.show()
![output[2]](../../images/3836021905.webp)
You may also like to have a look at my lognorm demo.