I have a table in pandas:
import pandas as pd
df = pd.DataFrame({
    'LeafID':[1,1,2,1,3,3,1,6,3,5,1],
    'pidx':[10,10,300,10,30,40,20,10,30,45,20],
    'pidy':[20,20,400,20,15,20,12,43,54,112,23],
    'count':[10,20,30,40,80,10,20,50,30,10,70],
    'score':[10,10,10,22,22,3,4,5,9,0,1]
})
LeafID  count       pidx     pidy   score
0   1       10           10        20     10
1   1       20           10        20     10
2   2       30          300       400     10
3   1       40           10        20     22
4   3       80           30        15     22
5   3       10           40        20      3
6   1       20           20        12      4
7   6       50           10        43      5
8   3       30           20        54      9
9   5       10           45       112      0
10  1       70           20        23      1
I want to do a groupby and then filter the rows where occurrence of pidx is greater than 2.
That is, filter rows where pidx is 10 and 20.
I tried using df.groupby('pidx').count() but it didn't helped me. Also for those rows I have to do 0.4*count+0.6*score.
Desired output is:
LeafID    count       pidx     pidy    final_score
   1       10           10        20
   1       20           10        20
   1       40           10        20
   6       50           10        43
   1       20           20        12
   3       30           20        54
   1       70           20        23
 
     
     
     
     
    