I have a piece of code which receives call-back from another function and creates a list of list (pd_arr). This list is then used to create a data frame. Finally the list of list is deleted.
On profiling using memory-profiler, this is the output
102.632812 MiB   0.000000 MiB       init()
236.765625 MiB 134.132812 MiB           add_to_list()
                                    return pd.DataFrame()
394.328125 MiB 157.562500 MiB       pd_df = pd.DataFrame(pd_arr, columns=df_columns)
350.121094 MiB -44.207031 MiB       pd_df = pd_df.set_index(df_columns[0])
350.292969 MiB   0.171875 MiB       pd_df.memory_usage()
350.328125 MiB   0.035156 MiB       print sys.getsizeof(pd_arr), sys.getsizeof(pd_arr[0]), sys.getsizeof(pd_df), len(pd_arr)
350.328125 MiB   0.000000 MiB       del pd_arr
On checking deep memory usage of pd_df (data frame), it is 80.5 MB. So, my question is why does the memory not decrement after del pd_arr line. 
Also, total data frame size as per profiler (157 - 44 = 110 MB) seems to be more than 80 MB. So, what causes the difference?
Also, is there any other memory-efficient way to create data frame (data received in loop) which is not too bad in time performance (For eg: increment of 10s of seconds should be fine for data-frame of size 100MB)?
Edit: Simple python script which explains this behaviour
Filename: py_test.py
Line #    Mem usage    Increment   Line Contents
================================================
     9    102.0 MiB      0.0 MiB   @profile
    10                             def setup():
    11                              global arr, size
    12    102.0 MiB      0.0 MiB    arr = range(1, size)
    13    131.2 MiB     29.1 MiB    arr = [x+1 for x in arr]
Filename: py_test.py
Line #    Mem usage    Increment   Line Contents
================================================
    21    131.2 MiB      0.0 MiB   @profile
    22                             def tearDown():
    23                              global arr
    24    131.2 MiB      0.0 MiB    del arr[:]
    25    131.2 MiB      0.0 MiB    del arr
    26     93.7 MiB    -37.4 MiB    gc.collect()
On introducing dataframe,
Filename: py_test.py
Line #    Mem usage    Increment   Line Contents
================================================
     9    102.0 MiB      0.0 MiB   @profile
    10                             def setup():
    11                              global arr, size
    12    102.0 MiB      0.0 MiB    arr = range(1, size)
    13    132.7 MiB     30.7 MiB    arr = [x+1 for x in arr]
Filename: py_test.py
Line #    Mem usage    Increment   Line Contents
================================================
    15    132.7 MiB      0.0 MiB   @profile
    16                             def dfCreate():
    17                              global arr
    18    147.1 MiB     14.4 MiB    pd_df = pd.DataFrame(arr)
    19    147.1 MiB      0.0 MiB    return pd_df
Filename: py_test.py
Line #    Mem usage    Increment   Line Contents
================================================
    21    147.1 MiB      0.0 MiB   @profile
    22                             def tearDown():
    23                              global arr
    24                              #del arr[:]
    25    147.1 MiB      0.0 MiB    del arr
    26    147.1 MiB      0.0 MiB    gc.collect()
 
    