You can use groupBy.pivot and then aggregate the sale_amount column, in this case, you can take the first value from each combination ids of item and week if there are no more than one row within each combination:
df.groupBy("item_id").pivot("week_id").agg(first("sale_amount")).show
+-------+---+---+---+
|item_id|  1|  2|  3|
+-------+---+---+---+
|      1| 10| 12| 15|
|      2|  4|  7|  9|
+-------+---+---+---+
You can use other aggregation functions if there are more than one row for each combination of item_id and week_id, the sum for instance:
df.groupBy("item_id").pivot("week_id").agg(sum("sale_amount")).show
+-------+---+---+---+
|item_id|  1|  2|  3|
+-------+---+---+---+
|      1| 10| 12| 15|
|      2|  4|  7|  9|
+-------+---+---+---+
To get proper column names, you can transform the week_id column before pivoting:
import org.apache.spark.sql.functions._
(df.withColumn("week_id", concat(lit("week_"), df("week_id"))).
    groupBy("item_id").pivot("week_id").agg(first("sale_amount")).show)
+-------+------+------+------+
|item_id|week_1|week_2|week_3|
+-------+------+------+------+
|      1|    10|    12|    15|
|      2|     4|     7|     9|
+-------+------+------+------+