Using the data.table package:
# load 'data.table'
library(data.table)
# melt into long format and add 'row.id' variable with number of each row
dat2 <- melt(setDT(dat)[, row.id := .I], id = 'row.id')
# create a grouping variable for each block of 25 values
dat2[, grp := rep(1:4, each = 25), by = row.id]
# summarise
dat2[, .(mn = mean(value), std = sd(value) ), by = .(row.id,grp)]
which gives:
    row.id grp          mn       std
 1:      1   1 -0.30388554 1.0307631
 2:      2   1  0.04381967 0.7939788
 3:      3   1  0.03106169 0.8581719
 4:      4   1 -0.15215035 0.8200987
....
15:     15   1 -0.23641918 0.7024393
16:     16   1  0.09745967 1.0253811
17:      1   2 -0.16414997 0.8695713
18:      2   2 -0.06763887 1.0294245
....
31:     15   2  0.06034238 0.7756055
32:     16   2  0.16387033 0.9285894
33:      1   3  0.32860736 1.0802055
34:      2   3  0.51183174 0.9562819
....
47:     15   3  0.16075275 1.0335789
48:     16   3 -0.43298467 1.1010562
49:      1   4  0.24918962 0.9580600
50:      2   4 -0.13005426 1.1693455
....
62:     14   4  0.02436604 0.7341284
63:     15   4 -0.19614383 0.7039496
64:     16   4  0.01182338 0.8465747
How this works:
- With setDT(dat)the dataframe is converted to adata.table(which is an enhanced form of adata.frame)
- [, row.id := .I]add a variable with a rownumber
- meltis then used to transform the data into long format with the rownumber as identifier.
- Next, for each row.ida grouping variable is created withrep(1:4, each = 25)which creates a vector of 251's, then 252's and so on. So for example, the first 25 values forrow.id == 1(which correspond to the first 25 columns of the originaldat-dataframe) get group id1, the 2nd 25 values get group id2, and so on.
- Next you summarise with dat2[, .(mn = mean(value), std = sd(value) ), by = .(row.id,grp)]where you userow.idandgrpas grouping variable.
The result is a mean and a standard deviation for each group of columns for each row.
Another option is to use a combination of dcast and melt and the possibility to specify multiple aggregate functions in dcast:
dcast(melt(setDT(dat)[, row.id := .I], id = 'row.id')[, grp := rep(1:4, each = 25), by = row.id],
      row.id ~ grp, fun.aggregate = list(mean, sd))
which gives:
    row.id value_mean_1 value_mean_2 value_mean_3 value_mean_4 value_sd_1 value_sd_2 value_sd_3 value_sd_4
 1:      1  -0.30388554  -0.16414997   0.32860736   0.24918962  1.0307631  0.8695713  1.0802055  0.9580600
 2:      2   0.04381967  -0.06763887   0.51183174  -0.13005426  0.7939788  1.0294245  0.9562819  1.1693455
 3:      3   0.03106169  -0.07250312   0.21619928   0.13092043  0.8581719  1.1439506  0.9441762  1.0006230
 4:      4  -0.15215035  -0.08417522  -0.27278714  -0.04190002  0.8200987  0.9008114  1.0394255  1.2063465
 5:      5   0.21871123   0.08029101  -0.04965507  -0.15279897  0.9593703  0.8409534  0.8878550  1.0157824
 6:      6   0.22335221   0.27142844   0.14032413   0.09975956  1.1154142  1.0896226  0.8587636  1.1147968
 7:      7   0.16725794  -0.03462013   0.14675249  -0.15678569  0.9991910  0.9236954  1.1258560  1.0250408
 8:      8  -0.12872236   0.03884649  -0.48565736  -0.30525278  1.0118579  1.0266040  1.1284902  0.9048042
 9:      9   0.25986114   0.25181718   0.07673463  -0.11521187  1.0509685  0.8352278  1.0952720  1.0706587
10:     10  -0.32670802  -0.04590547   0.22610217   0.09406650  1.0674699  0.8378048  0.8128130  0.9126611
11:     11  -0.16219092  -0.24172025  -0.14231462   0.03671087  1.1617784  1.0522955  0.8899262  0.8982543
12:     12   0.21109682   0.19735885  -0.03901236  -0.19283362  0.9064956  0.9530479  1.0422911  0.8323033
13:     13   0.11926882   0.29611127  -0.37648849  -0.08673776  1.0739078  0.7220276  0.9455307  0.9623676
14:     14   0.26478861   0.16054927  -0.03315950   0.02436604  1.0555501  1.0713119  0.9112082  0.7341284
15:     15  -0.23641918   0.06034238   0.16075275  -0.19614383  0.7024393  0.7756055  1.0335789  0.7039496
16:     16   0.09745967   0.16387033  -0.43298467   0.01182338  1.0253811  0.9285894  1.1010562  0.8465747
With dplyr/tidyr:
library(dplyr)
library(tidyr)
dat %>% 
  mutate(id = row_number()) %>% 
  gather(k, v, 1:100) %>% 
  group_by(id) %>% 
  mutate(grp = rep(1:4, each = 25)) %>% 
  group_by(id, grp) %>% 
  summarise(mn = mean(v), std = sd(v))
Or with base R:
dat2 <- reshape(data = dat, ids = rownames(dat), direction = 'long', varying = list(names(dat)), times = names(dat))
dat2 <- transform(dat2, grp = ave(id, id, FUN = function(i) rep(1:4, each = 25)))
aggregate(X1 ~ id + grp, dat2, FUN = function(x) c(std = sd(x), mn = mean(x)))