I am having problems transposing values in a DataFrame in Scala. My initial DataFramelooks like this:
+----+----+----+----+
|col1|col2|col3|col4|
+----+----+----+----+
| A| X| 6|null|
| B| Z|null| 5|
| C| Y| 4|null|
+----+----+----+----+
col1 and col2 are type String and col3 and col4 are Int.
And the result should look like this:
+----+----+----+----+------+------+------+
|col1|col2|col3|col4|AXcol3|BZcol4|CYcol4|
+----+----+----+----+------+------+------+
| A| X| 6|null| 6| null| null|
| B| Z|null| 5| null| 5| null|
| C| Y| 4| 4| null| null| 4|
+----+----+----+----+------+------+------+
That means that the three new columns should be named after col1, col2 and the column the value is extracted. The extracted value comes from the column col2, col3 or col5 depending which value is not null.
So how to achieve that? I first thought of a UDF like this:
def myFunc (col1:String, col2:String, col3:Long, col4:Long) : (newColumn:String, rowValue:Long) = {
if col3 == null{
val rowValue=col4;
val newColumn=col1+col2+"col4";
} else{
val rowValue=col3;
val newColumn=col1+col2+"col3";
}
return (newColumn, rowValue);
}
val udfMyFunc = udf(myFunc _ ) //needed to treat it as partially applied function
But how can I call it from the dataframe in the right way?
Of course, all code above is rubbish and there could be a much better way. Since I am just juggling the first code snippets let me know... Comparing the Int value to null is already not working.
Any help is appreciated! Thanks!