I'm trying to convert a categorical variable into a factor in R after using the melt() function to convert from wide to long format. However, when I run the factor function and input levels and labels, I get a table of :
Does anyone know why this is happening?
law <- read.csv("lawyers_class_new.csv")
library(reshape2)
law <- melt(law, id.vars = c("Subj"), measure.vars = c("lawyer", "neutral", "engineer", "neutral_urb", "neutral_rur"))
law <- law[order(law$Subj),]
law <- within(law,
              Subj <- factor(Subj),
              variable <- factor(variable)
              )
law$variable<- ordered(law$variable,levels=c(1,2,3,4,5),labels=c("lawyer","neutral",
    "engineer","neutral_urb","neutral_rur"))
Output: 
law$variable
  [1] <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>     <NA> <NA> <NA> <NA>
 [18] <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
 [35] <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
 [52] <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
 [69] <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
 [86] <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
[103] <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
[120] <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
[137] <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
MELTED DATA FRAME:
**Subj  Cond    variable    value**
1         2       lawyer      3
1         3      neutral      1
1         1      engineer     3.5
1         5      neutral_urb  3
1         4      neutral_rur  3.5
2         2      lawyer       1
2         3      neutral      3.5
2         1      engineer     4.5
2         5      neutral_urb  2
2         4      neutral_rur  3.5
ORIGINAL DATA FRAME:
Subj    lawyer  neutral engineer    neutral_urb neutral_rur
1          3       1      3.5           3          3.5
2          1     3.5      4.5           2          3.5
 
    