I am trying to write an SVM following this tutorial but using my own data. https://pythonprogramming.net/preprocessing-machine-learning/?completed=/linear-svc-machine-learning-testing-data/
I keep getting this error:
ValueError: The number of classes has to be greater than one; got 1
My code is:
header1 = ["Number of Sides", "Standard Deviation of Number of Sides/Perimeter",
      "Standard Deviation of the Angles", "Largest Angle"]
header2 = ["Label"]
features = header1
features1 = header2
def Build_Data_Set():
    data_df = pd.DataFrame.from_csv("featureVectors.csv")
    #data_df = data_df[:3]
    X = np.array(data_df[features].values)
    data_df2 = pd.DataFrame.from_csv("labels.csv")
    y = np.array(data_df2[features1].replace("Circle",0).replace("Triangle",1)
                 .replace("Square",2).replace("Parallelogram",3)
                 .replace("Rectangle",4).values.tolist())
    return X,y
def Analysis():
    test_size = 4
    X,y = Build_Data_Set()
    print(len(X))
    clf = svm.SVC(kernel = 'linear', C = 1.0)
    clf.fit(X[:-test_size],y[:-test_size])
    correct_count = 0
    for x in range(1, test_size+1):
            if clf.predict(X[-x])[0] == y[-x]:
                correct_count += 1
    print("Accuracy:", (correct_count/test_size) * 100.00)
My array for features which is used for X looks like this:
[[4, 0.001743713493735165, 0.6497055601752815, 90.795723552739275], 
 [4, 0.0460937435599832, 0.19764217920409227, 90.204147248752378], 
 [1, 0.001185534503063044, 0.3034913722821194, 60.348908179729023], 
 [1, 0.015455289770298222, 0.8380914254332884, 109.02120657826231], 
 [3, 0.0169961646358455, 0.2458746325894564, 136.83829993466398]]
My array for labels used in Y looks like this:
 ['Square', 'Square', 'Circle', 'Circle', 'Triangle']
I have only used 5 sets of data so far because I knew the program wasn't working.
I have attached pictures of the values in their csv files in case that helps.
 
     
    