I'm using Spark 1.6 with Scala.
i was looking here but i didnt find a clear answer 
I have a big file, after filtering the first lines that contain some copyrights I want to take the header (104 fields) and convert it to StructType schema.
I was thinking to use a class extends Product trait to define the schema of the Dataframe and then convert it to Dataframe according to that schema.
What is the best way to do it.
This is a sample from my file:
   text  (06.07.03.216)  COPYRIGHT © skdjh 2000-2016
    text  160614_54554.vf Database    53643_csc   Interface   574 zn  65
    Start   Date    14/06/2016  00:00:00:000
    End Date    14/06/2016  00:14:59:999
    State   "s23"
        cin. Nb      Start     End        Event       Con. Duration  IMSI
        32055680    16/09/2010 16:59:59:245 16/09/2016 17:00:00:000 xxxxxxxxxxxxx
        32055680    16/09/2010 16:59:59:245 16/09/2016 17:00:00:000 xxxxxxxxxxxxx
        32055680    16/09/2010 16:59:59:245 16/09/2016 17:00:00:000 xxxxxxxxxxxxx
        32055680    16/09/2010 16:59:59:245 16/09/2016 17:00:00:000 xxxxxxxxxxxxx
        32055680    16/09/2010 16:59:59:245 16/09/2016 17:00:00:000 xxxxxxxxxxxxx
T want to convert it to SparkSQL like this schema
    ----------------------------------------------------------------------------------------
  |    cin_Nb |  Start            |   End          |      Event   |   Con_Duration  | IMSI  |
  | ----------------------------------------------------------------------------------------|
  |   32055680 |   16/09/2010     |   16:59:59:245 |  16/09/2016  |   17:00:00:000  | xxxxx |
  |   32055680 |   16/09/2010     |   16:59:59:245 |  16/09/2016  |   17:00:00:000  | xxxxx |
  |   32055680 |   16/09/2010     |   16:59:59:245 |  16/09/2016  |   17:00:00:000  | xxxxx |
  |   20556800 |   16/09/2010     |   16:59:59:245 |  16/09/2016  |   17:00:00:000  | xxxxx |
  |   32055680 |   16/09/2010     |   16:59:59:245 |  16/09/2016  |   17:00:00:000  | xxxxx | 
    ----------------------------------------------------------------------------------------