I have a column in pandas which has string and numbers mixed I want to strip numbers from the string.
A
11286011
11268163
C7DDA72897
C8ABC557
Abul
C80DAS577
C80DSS665
Want an output as
A
C7DDA72897
C8ABC557
Abul
C80DAS577
C80DSS665
I have a column in pandas which has string and numbers mixed I want to strip numbers from the string.
A
11286011
11268163
C7DDA72897
C8ABC557
Abul
C80DAS577
C80DSS665
Want an output as
A
C7DDA72897
C8ABC557
Abul
C80DAS577
C80DSS665
In [52]: df
Out[52]:
            A
0    11286011
1    11268163
2  C7DDA72897
3    C8ABC557
4   C80DAS577
5   C80DSS665
In [53]: df = pd.to_numeric(df.A, errors='coerce').dropna()
In [54]: df
Out[54]:
0    11286011.0
1    11268163.0
Name: A, dtype: float64
or using RegEx:
In [59]: df.loc[~df.A.str.contains(r'\D+')]
Out[59]:
          A
0  11286011
1  11268163
You can use .str.isnumeric to use in boolean slicing. 
df[df.A.astype(str).str.isnumeric()]
          A
0  11286011
1  11268163
As pointed out by @MaxU, assuming every element is already a string, you can limit this to
df[df.A.str.isnumeric()]
          A
0  11286011
1  11268163