Below is a small code I am trying to calculate the softmax. It works well for a single array. But with a larger number like 1000 etc, it blows up
import numpy as np
def softmax(x):
 print (x.shape)
 softmax1 = np.exp(x)/np.sum(np.exp(x))
 return softmax1
def test_softmax():
  print "Running your code"
  #print softmax(np.array([1,2]))
  test1 = softmax(np.array([1,2]))
  ans1 = np.array([0.26894142,  0.73105858])
  assert np.allclose(test1, ans1, rtol=1e-05, atol=1e-06)
  print ("Softmax values %s" % test1)
  test2 = softmax(np.array([[1001,1002],[3,4]]))
  print test2
  ans2 = np.array([
      [0.26894142, 0.73105858],
      [0.26894142, 0.73105858]])
  assert np.allclose(test2, ans2, rtol=1e-05, atol=1e-06)
if __name__ == "__main__":
 test_softmax()
I get an error RuntimeWarning: overflow encountered in exp Running your code softmax1 = np.exp(x)/np.sum(np.exp(x))
 
    