I am teaching myself R since some days and I am stuck with a cox regression analysis.
I managed to divide each of the the continuous variables I have into 2 categorical groups using the cut() function. 
Now I wonder if I can combine these categories seperately in a cox regression analysis.
For example: I have 3 variables (A,B,C), each consisting of 2 categories: A-,A+ & B-,B+ & C-,C+. Now if I run the coxph() with naming the variables I only get the results for the "+" categories (which as I understand is because the "-" categories are used as a reference group).
However, since C- seems to have a negative effect on survival, I would be more interested in recieving the result for that category.
Also I wonder if there is a way I can define each category as a new group/variable and combine them individually to see the impact of each on the survival? Or is this unnecessary?
Edit: I'll try giving a more specific example, I hope it works :)
#example data:
test<-structure(list(A = c(8, 6, 42, 97, 55, 1, 5, 7, 55, 4), B = c(93, 9, 65, 2, 51, 89, 1, 1, 5, 62), C = c(58, 99, 100, 98, 92, 100, 99, 95, 81, 67), time = c(1.6, 34.6, 1.5, 35.8, 7.7, 38.6, 40.2, 4.7, 37.6, 8.6), event= c(1, 0, 0, 0, 1, 0, 0, 1, 0, 1)))
mydata<-as.data.frame(test)
It should look like so:
 mydata
    A  B   C time status
1   8 93  58  1.6      1
2   6  9  99 34.6      0
3  42 65 100  1.5      0
4  97  2  98 35.8      0
5  55 51  92  7.7      1
6   1 89 100 38.6      0
7   5  1  99 40.2      0
8   7  1  95  4.7      1
9  55  5  81 37.6      0
10  4 62  67  8.6      1
And concerning the questions above, this is what I have done so far:
#load survival package
library("survival")
#define variables
A <- c(mydata[1:10,1])
B <- c(mydata[1:10,2])
C <- c(mydata[1:10,3])
OS <- c(mydata[1:10,4])
Event <- c(mydata[1:10,5])
# dependent and independent variables
y <- Surv(OS, Event)
x <- cbind(A, B, C)
mydata <- data.frame(cbind(x,y))
#Cox proportional hazard model, with the "raw data"
coxph1 <- coxph(y~x,data=mydata, method="breslow")
summary(coxph1)
#categorising the variables
CA=cut(mydata$A, br=c(-1,20,101), labels = c("[A-]", "[A+]"))
CB=cut(mydata$B, br=c(-1,20,101), labels = c("[B-]", "[B+]"))
CC=cut(mydata$C, br=c(-1,96,101), labels = c("[C-]", "[C+]"))
#Cox regression, combined with cut intervals
coxph2=coxph(y~CA+CB+CC, data=mydata, method="breslow")
summary(coxph2)
And the expected output is:
coxph(formula = y ~ x, data = mydata, method = "breslow")
  n= 10, number of events= 4 
         coef  exp(coef)   se(coef)      z Pr(>|z|)
xA  0.0001443  1.0001443  0.0238329  0.006    0.995
xB  0.0104826  1.0105378  0.0211830  0.495    0.621
xC -0.0497490  0.9514682  0.0383305 -1.298    0.194
   exp(coef) exp(-coef) lower .95 upper .95
xA    1.0001     0.9999    0.9545     1.048
xB    1.0105     0.9896    0.9694     1.053
xC    0.9515     1.0510    0.8826     1.026
Concordance= 0.769  (se = 0.167 )
Rsquare= 0.29   (max possible= 0.799 )
Likelihood ratio test= 3.43  on 3 df,   p=0.33
Wald test            = 3.3  on 3 df,   p=0.3476
Score (logrank) test = 4.24  on 3 df,   p=0.2364
coxph(formula = y ~ CA + CB + CC, data = mydata, method = "breslow")
  n= 10, number of events= 4 
             coef  exp(coef)   se(coef)      z Pr(>|z|)
CA[A+] -1.036e+00  3.549e-01  1.262e+00 -0.821    0.412
CB[B+]  4.294e-01  1.536e+00  1.274e+00  0.337    0.736
CC[C+] -2.162e+01  4.095e-10  2.094e+04 -0.001    0.999
       exp(coef) exp(-coef) lower .95 upper .95
CA[A+] 3.549e-01  2.818e+00    0.0299     4.213
CB[B+] 1.536e+00  6.509e-01    0.1266    18.653
CC[C+] 4.095e-10  2.442e+09    0.0000       Inf
Concordance= 0.904  (se = 0.165 )
Rsquare= 0.542   (max possible= 0.799 )
Likelihood ratio test= 7.8  on 3 df,   p=0.05031
Wald test            = 1.15  on 3 df,   p=0.7653
Score (logrank) test = 6.42  on 3 df,   p=0.09288
 
    