Let's say I have one data.frame with monthly sales tickets, with an ID client, the month and the amount of money.
head(tickets)
  id_client      month sales
1   ID87160 2016-01-01 16875
2   ID18694 2016-01-01   448
3   ID20624 2016-01-01 16311
4  ID171683 2016-01-01   314
5  ID214926 2016-01-01  8889
6   ID82071 2016-01-01  7479
I have another data.frame where I have the moment when the clients canceled their subscription.
head(stop_being_client)
  id_client       date
1  ID235005 2016-03-01
2   ID50615 2016-04-01
3   ID72078 2016-03-01
4  ID129556 2016-01-01
5  ID204060 2016-04-01
6   ID57769 2016-01-01
Now I need to check that in the tickets table don't exist any register of a client no-subscribed, i.e. with a month in tickets bigger than the date in stop_being_client.
In PostgreSQL would be easy:
SELECT
    *
FROM
    tickets
JOIN
    stop_being_client
ON
    tickets.id_client = stop_being_client.id_client
WHERE
    tickets.month > stop_being_client.date;
But I have no idea how to do it in R. I tried with this
tickets[which(
    tickets$id_client %in% stop_being_client$id_client &
    tickets$month > stop_being_client$date
    ),]
But I'm pretty sure that the result is not what I want, because somehow I need to relate the id_client from both tables when comparing the dates.
EDIT: I put an example:
This is the tickets data.frame:
id_client      month sales
      ID2 2016-01-01 12698
      ID1 2016-01-01  8626
      ID2 2016-02-01 18309
      ID1 2016-02-01 15653
      ID3 2016-02-01  9642
      ID3 2016-03-01 18376
      ID1 2016-03-01 13440
      ID2 2016-03-01  2322
      ID1 2016-04-01 19010
      ID3 2016-04-01  7129
      ID2 2016-04-01 14694
      ID2 2016-05-01  4726
      ID1 2016-05-01   706
      ID3 2016-05-01 16995
      ID1 2016-06-01 18743
      ID3 2016-06-01 16725
      ID2 2016-07-01  2632
This is the table stop_being_client:
id_client       date
      ID1 2016-03-01
      ID2 2016-04-01
So I want to detect those rows in tickets, that shouldn't exists, in that case:
id_client      month sales
      ID1 2016-04-01 19010
      ID2 2016-05-01  4726
      ID1 2016-05-01   706
      ID1 2016-06-01 18743
      ID2 2016-07-01  2632
 
     
    