See this answer Principal Components Analysis - how to get the contribution (%) of each parameter to a Prin.Comp.?
The information is stored within your pca results.
If you used prcomp(), then $rotation is what you are after, or if you used princomp(), then $loadings holds the key.
Eg.
require(graphics)
data("USArrests")
pca_1<-prcomp(USArrests, scale = TRUE)
load_1<-with(pca_1,unclass(rotation))
aload_1<-abs(load_1)
sweep(aload_1, 2, colSums(aload_1), "/")
#               PC1       PC2       PC3        PC4
#Murder   0.2761363 0.2540139 0.1890303 0.40186493
#Assault  0.3005008 0.1141873 0.1485443 0.46016113
#UrbanPop 0.1433452 0.5301651 0.2094067 0.08286886
#Rape     0.2800177 0.1016337 0.4530187 0.05510509
pca_2<-princomp(USArrests,cor=T)
load_2<-with(pca_2,unclass(loadings))
aload_2<-abs(load_2)
sweep(aload_2, 2, colSums(aload_2), "/")
#            Comp.1    Comp.2    Comp.3     Comp.4
#Murder   0.2761363 0.2540139 0.1890303 0.40186493
#Assault  0.3005008 0.1141873 0.1485443 0.46016113
#UrbanPop 0.1433452 0.5301651 0.2094067 0.08286886
#Rape     0.2800177 0.1016337 0.4530187 0.05510509
As you can see, Murder, Assault, and Rape each contribute ~30% to PC1, whereas UrbanPop only contributes ~14% to PC1, yet is the major contributor to PC2 (~53%).