I had a dataset like this
dataset.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 79902 entries, 0 to 79901
Data columns (total 6 columns):
 #   Column            Non-Null Count  Dtype 
---  ------            --------------  ----- 
 0   Query             79902 non-null  object
 1   Video Title       79902 non-null  object
 2   Video ID          79902 non-null  object
 3   Video Views       79902 non-null  object
 4   Comment ID        79902 non-null  object
 5   cleaned_comments  79902 non-null  object
dtypes: object(6)
memory usage: 5.5+ MB
Removed the None, NaN entries using
dataset = dataset.replace(to_replace='None', value=np.nan).dropna()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 79868 entries, 0 to 79901
Data columns (total 6 columns):
 #   Column            Non-Null Count  Dtype 
---  ------            --------------  ----- 
 0   Query             79868 non-null  object
 1   Video Title       79868 non-null  object
 2   Video ID          79868 non-null  object
 3   Video Views       79868 non-null  object
 4   Comment ID        79868 non-null  object
 5   cleaned_comments  79868 non-null  object
dtypes: object(6)
memory usage: 6.1+ MB
Notice the reduced entries
But the Video Views were floats, as shown in dataset.head()
Then I used
dataset['Video Views'] = pd.to_numeric(dataset['Video Views'])
dataset['Video Views'] = dataset['Video Views'].astype(int)
Now,
<class 'pandas.core.frame.DataFrame'>
Int64Index: 79868 entries, 0 to 79901
Data columns (total 6 columns):
 #   Column            Non-Null Count  Dtype 
---  ------            --------------  ----- 
 0   Query             79868 non-null  object
 1   Video Title       79868 non-null  object
 2   Video ID          79868 non-null  object
 3   Video Views       79868 non-null  int64 
 4   Comment ID        79868 non-null  object
 5   cleaned_comments  79868 non-null  object
dtypes: int64(1), object(5)
memory usage: 6.1+ MB