If want plot timedelta, now it is not implemented, so possible solution is convert time column to total_seconds:
import pandas as pd
from pandas.compat import StringIO
temp=u"""time;Watt
00:00:00;0
01:00:00;0
02:00:00;0
03:00:00;0
04:00:00;0
05:00:00;45
06:00:00;56
07:00:00;88"""
#after testing replace 'StringIO(temp)' to 'filename.csv'
converter = {'time':lambda x: pd.to_timedelta(x)}
df = pd.read_csv(StringIO(temp), sep=";", converters=converter)
df['time_in_sec'] = df['time'].dt.total_seconds()
print (df)
       time  Watt  time_in_sec
0  00:00:00     0          0.0
1  01:00:00     0       3600.0
2  02:00:00     0       7200.0
3  03:00:00     0      10800.0
4  04:00:00     0      14400.0
5  05:00:00    45      18000.0
6  06:00:00    56      21600.0
7  07:00:00    88      25200.0
df.plot(x='time_in_sec', y='Watt')
Another solution:
import pandas as pd
from pandas.compat import StringIO
temp=u"""time;Watt
00:00:00;0
01:00:00;0
02:00:00;0
03:00:00;0
04:00:00;0
05:00:00;45
06:00:00;56
07:00:00;88"""
#after testing replace 'StringIO(temp)' to 'filename.csv'
df = pd.read_csv(StringIO(temp), sep=";")
df['time_in_sec'] = pd.to_timedelta(df['time']).dt.total_seconds()
print (df)
       time  Watt  time_in_sec
0  00:00:00     0          0.0
1  01:00:00     0       3600.0
2  02:00:00     0       7200.0
3  03:00:00     0      10800.0
4  04:00:00     0      14400.0
5  05:00:00    45      18000.0
6  06:00:00    56      21600.0
7  07:00:00    88      25200.0
df.plot(x='time_in_sec', y='Watt')
Solution with parsing timedelta as datetime in read_csv and then convert to time:
import pandas as pd
import numpy as np
from pandas.compat import StringIO
temp=u"""time;Watt
00:00:00;0
01:00:00;0
02:00:00;0
03:00:00;0
04:00:00;0
05:00:00;45
06:00:00;56
07:00:00;88"""
#after testing replace 'StringIO(temp)' to 'filename.csv'
df = pd.read_csv(StringIO(temp), sep=";", parse_dates=['time'])
df['time'] = df['time'].dt.time
print (df)
       time  Watt
0  00:00:00     0
1  01:00:00     0
2  02:00:00     0
3  03:00:00     0
4  04:00:00     0
5  05:00:00    45
6  06:00:00    56
7  07:00:00    88
df.plot(x='time', y='Watt')
---
Another possible solution is set index in read_csv:
import pandas as pd
from pandas.compat import StringIO
temp=u"""time;Watt
00:00:00;0
01:00:00;0
02:00:00;0
03:00:00;0
04:00:00;0
05:00:00;45
06:00:00;56
07:00:00;88"""
#after testing replace 'StringIO(temp)' to 'filename.csv'
df = pd.read_csv(StringIO(temp), sep=";", index_col=['time'])
df.index = pd.to_timedelta(df.index).total_seconds()
print (df)
         Watt
time         
0.0         0
3600.0      0
7200.0      0
10800.0     0
14400.0     0
18000.0    45
21600.0    56
25200.0    88
df['Watt'].plot()
import pandas as pd
from pandas.compat import StringIO
temp=u"""time;Watt
00:00:00;0
01:00:00;0
02:00:00;0
03:00:00;0
04:00:00;0
05:00:00;45
06:00:00;56
07:00:00;88"""
#after testing replace 'StringIO(temp)' to 'filename.csv'
df = pd.read_csv(StringIO(temp), sep=";", parse_dates=True, index_col=['time'])
df.index = df.index.time
print (df)
          Watt
00:00:00     0
01:00:00     0
02:00:00     0
03:00:00     0
04:00:00     0
05:00:00    45
06:00:00    56
07:00:00    88
df['Watt'].plot()