I have two pandas dataframes with following format:
df_ts = pd.DataFrame([
        [10, 20, 1,  'id1'],
        [11, 22, 5,  'id1'],
        [20, 54, 5,  'id2'],
        [22, 53, 7,  'id2'],
        [15, 24, 8,  'id1'],
        [16, 25, 10, 'id1']
    ], columns = ['x', 'y', 'ts', 'id'])
df_statechange = pd.DataFrame([
        ['id1', 2, 'ok'],
        ['id2', 4, 'not ok'],
        ['id1', 9, 'not ok']
    ], columns = ['id', 'ts', 'state'])
I am trying to get it to the format, such as:
df_out = pd.DataFrame([
        [10, 20, 1,  'id1', None    ],
        [11, 22, 5,  'id1', 'ok'    ],
        [20, 54, 5,  'id2', 'not ok'],
        [22, 53, 7,  'id2', 'not ok'],
        [15, 24, 8,  'id1', 'ok'    ],
        [16, 25, 10, 'id1', 'not ok']
    ], columns = ['x', 'y', 'ts', 'id', 'state'])
I understand how to accomplish it iteratively by grouping by id and then iterating through each row and changing status when it appears. Is there a pandas build-in more scalable way of doing this?
 
     
     
    