I am trying to create a classifier to categorize websites. I am doing this for the very first time so it's all quite new to me. Currently I am trying to do some Bag of Words on a couple of parts of the web page (e.g. title, text, headings). It looks like this:
from sklearn.feature_extraction.text import CountVectorizer
countvect_text = CountVectorizer(encoding="cp1252", stop_words="english")
countvect_title = CountVectorizer(encoding="cp1252", stop_words="english")
countvect_headings = CountVectorizer(encoding="cp1252", stop_words="english")
X_tr_text_counts = countvect_text.fit_transform(tr_data['text'])
X_tr_title_counts = countvect_title.fit_transform(tr_data['title'])
X_tr_headings_counts = countvect_headings.fit_transform(tr_data['headings'])
from sklearn.feature_extraction.text import TfidfTransformer
transformer_text = TfidfTransformer(use_idf=True)
transformer_title = TfidfTransformer(use_idf=True)
transformer_headings = TfidfTransformer(use_idf=True)
X_tr_text_tfidf = transformer_text.fit_transform(X_tr_text_counts)
X_tr_title_tfidf = transformer_title.fit_transform(X_tr_title_counts)
X_tr_headings_tfidf = transformer_headings.fit_transform(X_tr_headings_counts)
from sklearn.naive_bayes import MultinomialNB
text_nb = MultinomialNB().fit(X_tr_text_tfidf, tr_data['class'])
title_nb = MultinomialNB().fit(X_tr_title_tfidf, tr_data['class'])
headings_nb = MultinomialNB().fit(X_tr_headings_tfidf, tr_data['class'])
X_te_text_counts = countvect_text.transform(te_data['text'])
X_te_title_counts = countvect_title.transform(te_data['title'])
X_te_headings_counts = countvect_headings.transform(te_data['headings'])
X_te_text_tfidf = transformer_text.transform(X_te_text_counts)
X_te_title_tfidf = transformer_title.transform(X_te_title_counts)
X_te_headings_tfidf = transformer_headings.transform(X_te_headings_counts)
accuracy_text = text_nb.score(X_te_text_tfidf, te_data['class'])
accuracy_title = title_nb.score(X_te_title_tfidf, te_data['class'])
accuracy_headings = headings_nb.score(X_te_headings_tfidf, te_data['class'])
This works fine, and I get the accuracies as expected. However, as you might have guessed, this looks cluttered and is filled with duplication. My question then is, is there a way to write this more concisely?
Additionally, I am not sure how I can combine these three features into a single multinomial classifier. I tried passing a list of tfidf values to MultinomialNB().fit(), but apparently that's not allowed.
Optionally, it would also be nice to add weights to the features, so that in the final classifier some vectors have a higher importance than others.
I'm guessing I need pipeline but I'm not at all sure how I should use it in this case.