I think there are several ways to decrease discriminator:
Try leaky_relu and dropout in discriminator function:
def leaky_relu(x, alpha, name="leaky_relu"):
    return tf.maximum(x, alpha * x , name=name)
 
Here is entire definition:
def discriminator(images, reuse=False):
# Implement a seperate leaky_relu function
def leaky_relu(x, alpha, name="leaky_relu"):
    return tf.maximum(x, alpha * x , name=name)
# Leaky parameter Alpha 
alpha = 0.2
# Add batch normalization, kernel initializer, the LeakyRelu activation function, ect. to the layers accordingly
with tf.variable_scope('discriminator', reuse=reuse):
    # 1st conv with Xavier weight initialization to break symmetry, and in turn, help converge faster and prevent local minima.
    images = tf.layers.conv2d(images, 64, 5, strides=2, padding="same", kernel_initializer=tf.contrib.layers.xavier_initializer())
    # batch normalization
    bn = tf.layers.batch_normalization(images, training=True)
    # Leaky relu activation function
    relu = leaky_relu(bn, alpha, name="leaky_relu")
    # Dropout "rate=0.1" would drop out 10% of input units, oppsite with keep_prob
    drop = tf.layers.dropout(relu, rate=0.2)
    # 2nd conv with Xavier weight initialization, 128 filters.
    images = tf.layers.conv2d(drop, 128, 5, strides=2, padding="same", kernel_initializer=tf.contrib.layers.xavier_initializer())
    bn = tf.layers.batch_normalization(images, training=True)
    relu = leaky_relu(bn, alpha, name="leaky_relu")
    drop = tf.layers.dropout(relu, rate=0.2)
    # 3rd conv with Xavier weight initialization, 256 filters, strides=1 without reshape
    images = tf.layers.conv2d(drop, 256, 5, strides=1, padding="same", kernel_initializer=tf.contrib.layers.xavier_initializer())
    #print(images)
    bn = tf.layers.batch_normalization(images, training=True)
    relu = leaky_relu(bn, alpha, name="leaky_relu")
    drop = tf.layers.dropout(relu, rate=0.2)
    flatten = tf.reshape(drop, (-1, 7 * 7 * 128))
    logits = tf.layers.dense(flatten, 1)
    ouput = tf.sigmoid(logits)  
    return ouput, logits
Add label smoothing in discriminator loss to prevent discriminator becoming to strong. Increase smooth value according to d_loss performance. 
d_loss_real = tf.reduce_mean(
    tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real)*(1.0 - smooth)))