Hi I have two data frames with different lengths:
nrow(artdataframe1)
[1] 78
nrow(spdataframe)
[1] 7607
The two data frames have date columns as yyyymmdd
> head(artdataframe1)
   artdate artprice
1 19870330  $83.60 
2 19871111 $113.60 
3 19881128  $78.00 
4 19890509  $92.50 
5 19890531  $68.00 
6 19890801 $115.90 
> head(spdataframe)
  SP500close SP500date
1     289.20  19870330
2     291.70  19870331
3     292.39  19870401
4     293.63  19870402
5     300.41  19870403
6     301.95  19870406
I would like to join these two dataframes matching by date. It means the lines from artdataframe1 (nrow78) will join to spdataframe (nrow7607). It means there will be a lot of NA values in the ones that do not match which is fine.
I pulled both of these dataframes from the same .csv and already have removed the NA lines in artdataframe1 with
artdataframe1 <- artdataframe[!is.na(artdataframe[,1]),]
So that is some back ground. I tried to use this command but It is not matching per the date as I would expect:
newdf <- merge(spdataframe, artdataframe1, by = intersect(names(SP500date), names(artdate)),
      by.spdataframe = by, by.artdataframe1 = by, all = FALSE, all.spdataframe = all, all.artdataframe1 = all,
      sort = TRUE, suffixes = c(".spdataframe",".artdataframe1"),
      incomparables = NULL)
Any further guidance / assistance would be appreciated.
Thanks
Let me add this, this is the class of each dataframe:
> str(artdataframe1)
'data.frame':   78 obs. of  2 variables:
 $ artdate : int  19870330 19871111 19881128 19890509 19890531 19890801 19891127 19891130 19900515 19900517 ...
 $ artprice: Factor w/ 74 levels "","$102.10 ",..: 58 10 49 66 36 11 52 69 21 18 ...
> str(spdataframe)
'data.frame':   7607 obs. of  2 variables:
 $ SP500close: num  289 292 292 294 300 ...
 $ SP500date : int  19870330 19870331 19870401 19870402 19870403 19870406 19870407 19870408 19870409 19870410 ...
They are both integers - will this make a difference when merging?
 
    