I believe in the case of inheritance you must implement Coding yourself. That is, you must specify CodingKeys and implement init(from:) and encode(to:) in both superclass and subclass. Per the WWDC video (around 49:28, pictured below), you must call super with the super encoder/decoder.

required init(from decoder: Decoder) throws {
// Get our container for this subclass' coding keys
let container = try decoder.container(keyedBy: CodingKeys.self)
myVar = try container.decode(MyType.self, forKey: .myVar)
// otherVar = ...
// Get superDecoder for superclass and call super.init(from:) with it
let superDecoder = try container.superDecoder()
try super.init(from: superDecoder)
}
The video seems to stop short of showing the encoding side (but it's container.superEncoder() for the encode(to:) side) but it works in much the same way in your encode(to:) implementation. I can confirm this works in this simple case (see playground code below).
I'm still struggling with some odd behavior myself with a much more complex model I'm converting from NSCoding, which has lots of newly-nested types (including struct and enum) that's exhibiting this unexpected nil behavior and "shouldn't be". Just be aware there may be edge cases that involve nested types.
Edit: Nested types seem to work fine in my test playground; I now suspect something wrong with self-referencing classes (think children of tree nodes) with a collection of itself that also contains instances of that class' various subclasses. A test of a simple self-referencing class decodes fine (that is, no subclasses) so I'm now focusing my efforts on why the subclasses case fails.
Update June 25 '17: I ended up filing a bug with Apple about this. rdar://32911973 - Unfortunately an encode/decode cycle of an array of Superclass that contains Subclass: Superclass elements will result in all elements in the array being decoded as Superclass (the subclass' init(from:) is never called, resulting in data loss or worse).
//: Fully-Implemented Inheritance
class FullSuper: Codable {
var id: UUID?
init() {}
private enum CodingKeys: String, CodingKey { case id }
required init(from decoder: Decoder) throws {
let container = try decoder.container(keyedBy: CodingKeys.self)
id = try container.decode(UUID.self, forKey: .id)
}
func encode(to encoder: Encoder) throws {
var container = encoder.container(keyedBy: CodingKeys.self)
try container.encode(id, forKey: .id)
}
}
class FullSub: FullSuper {
var string: String?
private enum CodingKeys: String, CodingKey { case string }
override init() { super.init() }
required init(from decoder: Decoder) throws {
let container = try decoder.container(keyedBy: CodingKeys.self)
let superdecoder = try container.superDecoder()
try super.init(from: superdecoder)
string = try container.decode(String.self, forKey: .string)
}
override func encode(to encoder: Encoder) throws {
var container = encoder.container(keyedBy: CodingKeys.self)
try container.encode(string, forKey: .string)
let superencoder = container.superEncoder()
try super.encode(to: superencoder)
}
}
let fullSub = FullSub()
fullSub.id = UUID()
fullSub.string = "FullSub"
let fullEncoder = PropertyListEncoder()
let fullData = try fullEncoder.encode(fullSub)
let fullDecoder = PropertyListDecoder()
let fullSubDecoded: FullSub = try fullDecoder.decode(FullSub.self, from: fullData)
Both the super- and subclass properties are restored in fullSubDecoded.