Im writing a function that implements the following expression (1/n!)*(1!+2!+3!+...+n!).
The function is passed the arguement n and I have to return the above statement as a double, truncated to the 6th decimal place. The issue im running into is that the factorial value becomes so large that it becomes infinity (for large values of n).
Here is my code:
public static double going(int n) {
double factorial = 1.00;
double result = 0.00, sum = 0.00;
for(int i=1; i<n+1; i++){
factorial *= i;
sum += factorial;
}
//Truncate decimals to 6 places
result = (1/factorial)*(sum);
long truncate = (long)Math.pow(10,6);
result = result * truncate;
long value = (long) result;
return (double) value / truncate;
}
Now, the above code works fine for say n=5 or n= 113, but anything above n = 170 and my factorial and sum expressions become infinity. Is my approach just not going to work due to the exponential growth of the numbers? And what would be a work around to calculating very large numbers that doesnt impact performance too much (I believe BigInteger is quite slow from looking at similar questions).