I have what I thought was a well-prepared dataset. I wanted to use the Apriori Algorithm in R to look for associations and come up with some rules. I have about 16,000 rows (unique customers) and 179 columns that represent various items/categories. The data looks like this:
     Cat1  Cat2  Cat3  Cat4  Cat5 ... Cat179
     1,     0,    0,    0,    1,  ...  0
     0,     0,    0,    0,    0,  ...  1
     0,     1,    1,    0,    0,  ...  0
     ...
I thought having a comma separated file with binary values (1/0) for each customer and category would do the trick, but after I read in the data using:
data5 = read.csv("Z:/CUST_DM/data_test.txt",header = TRUE,sep=",")
and then run this command:
rules = apriori(data5, parameter = list(supp = .001,conf = 0.8))
I get the following error:
Error in asMethod(object):
column(s) 1, 2, 3, ...178 not logical or a factor. Discretize the columns first.  
I understand Discretize but not in this context I guess. Everything is a 1 or 0. I've even changed the data from INT to CHAR and received the same error. I also had the customer ID (unique) as column 1 but I understand that isn't necessary when the data is in this form (flat file). I'm sure there is something obvious I'm missing - I'm new to R.
What am I missing? Thanks for your input.
 
     
    