I have a csv file as shown below:
19/04/2015 00:00         180         187         85         162          608          61
19/04/2015 01:00          202         20         26          70         171          61
19/04/2015 02:00          20          40         40          11          40         810
19/04/2015 03:00          20          80          81         24          0          86
19/04/2015 04:00          25          30          70          91          07          50
19/04/2015 05:00          80         611          691          70          790          37
19/04/2015 06:00         199          69          706          70          790         171
19/04/2015 07:00          80          81          90         192          57         254
19/04/2015 08:00          40         152          454         259          52         151
Each row is in the same cell in the file.
I'm trying to make it look like this:
19/04/2015 00:00   180 
19/04/2015 00:10   187
19/04/2015 00:20    85
19/04/2015 00:30   162 
19/04/2015 00:40   608
19/04/2015 00:50    61
19/04/2015 01:00   202    
etc..
Explaination:
The first list of numbers is a date dd/M/YYYY HH:mm with 6 values, each value per 10 minutes.
In the second presentation, I wanted to have the date of each value with the exact time with minutes.
Here is what I've tried so far:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import sys, getopt
import tarfile
import re
import pandas as pd
import tempfile
import shutil
import collections
import urllib
import numpy
import logging
import csv
csvFile = "testfile.csv"
data = []
minutes = ['00:00','10:00','20:00','30:00','40:00','50:00']
with open(csvFile, 'rb') as csvfile:
  reader = csv.reader(csvfile, delimiter=',')
  for row in reader:
    row[0] = re.sub("\s+", ";", row[0].strip())
    rowlist = row[0].split(';')
    while(len(rowlist)<8):
        rowlist.append(0)
    for i in range(len(rowlist)):
        for m in minutes:
            data.append(rowlist[0]+rowlist[1]+m)
            data.append(rowlist[i])
    df = pd.DataFrame(data)
    df.to_csv('example.csv')
But this code didn't give me the desired result. Any suggestions?