I have the following loop for a monte-carlo computation I am performing:
the variables below are pre-computed/populated and is defined as:
    w_ = std::vector<std::vector<double>>(150000, std::vector<double>(800));
    C_ = Eigen::MatrixXd(800,800);
    Eigen::VectorXd a(800); 
    Eigen::VectorXd b(800);
The while loop is taking me about 570 seconds to compute.Just going by the the loops I understand that I have nPaths*m = 150,000 * 800 = 120,000,000 sets of computations happening (I have not taken into account the cdf computations handled by boost libraries).
I am a below average programmer and was wondering if there are any obvious mistakes which I am making which maybe slowing the computation down. Or is there any other way to handle the computation which can speed things up.
    int N(0);
    int nPaths(150000);
    int m(800);
    double Varsum(0.);
    double err;
    double delta;
    double v1, v2, v3, v4;
    Eigen::VectorXd d = Eigen::VectorXd::Zero(m);
    Eigen::VectorXd e = Eigen::VectorXd::Zero(m);
    Eigen::VectorXd f = Eigen::VectorXd::Zero(m);
    Eigen::VectorXd y; 
    y0 = Eigen::VectorXd::Zero(m);
    boost::math::normal G(0, 1.);
    d(0) = boost::math::cdf(G, a(0) / C_(0, 0));
    e(0) = boost::math::cdf(G, b(0) / C_(0, 0));
    f(0) = e(0) - d(0);  
    while (N < (nPaths-1))
    {
        y = y0;
        for (int i = 1; i < m; i++)
        {
            v1 = d(i - 1) + w_[N][(i - 1)]*(e(i - 1) - d(i - 1));
            y(i - 1) = boost::math::quantile(G, v1);
            v2 = (a(i) - C_.row(i).dot(y)) / C_(i, i);
            v3 = (b(i) - C_.row(i).dot(y)) / C_(i, i);
            d(i) = boost::math::cdf(G, v2);
            e(i) = boost::math::cdf(G, v3);
            f(i) = (e(i) - d(i))*f(i - 1);
        }
        N++; 
        delta = (f(m-1) - Intsum) / N;
        Intsum += delta;
        Varsum = (N - 2)*Varsum / N + delta*delta;
        err = alpha_*std::sqrt(Varsum);
   }
 
    