Problem: I am trying to appropriately classify each row of my data frame based on the description column. To do this, I want to extract keywords based on a list of common words. First, I split up the key phrases into words (i.e. 'Food Store' becomes 'Food' and 'Store'). Then, I check to see if any of the rows in my dataframe contain both the words 'Food' and 'Store'. Unfortunately, the code that I produced is much too slow. How can I optimize it to work on 5 million rows of data?
Sample Data:
Here are the first 30 rows of my dataframe:
   bank_report_id transaction_date  amount                                        description type_codes              category
0              14698       2016-04-26   -3.00  Simply Save TD EVERY DAY SAVINGS ACCOUNT xxxxx...                          Savings
1              14698       2016-04-25 -110.00                                  ROGERSWL 1TIME _V                    Uncategorized
2              14698       2016-04-25  -10.50                                     SUBWAY # x6664               Restaurants/Dining
3              14698       2016-04-25   -1.00  Simply Save TD EVERY DAY SAVINGS ACCOUNT xxxxx...                          Savings
4              14698       2016-04-25  -73.75                                    TICKETMASTER CA                    Entertainment
5              14698       2016-04-25   -6.20                                     HAPPY ONE STOP                 Home Improvement
6              14698       2016-04-25   -7.74                                    BOOSTERJUICE-19               Restaurants/Dining
7              14698       2016-04-25  -28.49                                    LEISURE-FIRST O                    Uncategorized
8              14698       2016-04-22   -3.16                                    MCDONALD'S #400               Restaurants/Dining
9              14698       2016-04-22   -0.50  Simply Save TD EVERY DAY SAVINGS ACCOUNT xxxxx...                          Savings
10             14698       2016-04-22  -10.50                                     SUBWAY # x6664               Restaurants/Dining
11             14698       2016-04-21  -19.87                                     TRAFALGAR ESSO                    Gasoline/Fuel
12             14698       2016-04-21   -1.00  Simply Save TD EVERY DAY SAVINGS ACCOUNT xxxxx...                          Savings
13             14698       2016-04-20   -3.76                                    MCDONALD'S #400               Restaurants/Dining
14             14698       2016-04-20   -1.00  Simply Save TD EVERY DAY SAVINGS ACCOUNT xxxxx...                          Savings
15             14698       2016-04-20  -40.00                                     TRAFALGAR ESSO                    Gasoline/Fuel
16             14698       2016-04-19  -10.07                                     TRAFALGAR ESSO                    Gasoline/Fuel
17             14698       2016-04-19   -5.21                                    TIM HORTONS #24               Restaurants/Dining
18             14698       2016-04-19   -3.50  Simply Save TD EVERY DAY SAVINGS ACCOUNT xxxxx...                          Savings
19             14698       2016-04-18   -1.00  Simply Save TD EVERY DAY SAVINGS ACCOUNT xxxxx...                          Savings
20             14698       2016-04-18   -5.21                                    TIM HORTONS #24               Restaurants/Dining
21             14698       2016-04-18  -22.57                                     WAL-MART #3170              General Merchandise
22             14698       2016-04-18  -16.94                                    URBAN PLANET #1                   Clothing/Shoes
23             14698       2016-04-18  -12.95                                     LCBO/RAO #0545               Restaurants/Dining
24             14698       2016-04-18  -13.87                                     TRAFALGAR ESSO                    Gasoline/Fuel
25             14698       2016-04-18  -41.75                                     NON-TD ATM W/D             ATM/Cash Withdrawals
26             14698       2016-04-18   -4.19                                     SUBWAY # x6338               Restaurants/Dining
27             14698       2016-04-15   -0.50  Simply Save TD EVERY DAY SAVINGS ACCOUNT xxxxx...                          Savings
28             14698       2016-04-15  -35.06                                       UNION BURGER               Restaurants/Dining
29             14698       2016-04-15  -25.00                                     PIONEER STN #1                      Electronics
Here is a small subset of the list of words:
['Exxon Mobil', 'Shell', 'Food Store', 'Pizza', 'Walgreens', 'Payday Loan', 'NSF', 'Lincoln', 'Apartment', 'Homes']
My attempt at a solution:
def get_matches(row):
    keywords = pd.read_csv('Keywords.csv', encoding='ISO-8859-1')['description'].apply(lambda x: x.lower()).str.split(
        " ").tolist()
    split_description = [d.lower() for d in row['description'].split(" ")]
    thematches = []
    for group in keywords:
        matches = [any([bool(re.search(y, x)) for x in split_description]) for y in group]
        if all(matches):
            thematches.append(" ".join(group))
    if len(thematches) > 0:
        return thematches
    else:
        return "NA"
df['match'] = df.apply(get_matches, axis=1)
Desired Output:
    bank_report_id transaction_date  amount                                        description type_codes              category              match
0            14698       2016-04-26   -3.00  Simply Save TD EVERY DAY SAVINGS ACCOUNT xxxxx...                          Savings      [simply save]
1            14698       2016-04-25 -110.00                                  ROGERSWL 1TIME _V                    Uncategorized           [rogers]
2            14698       2016-04-25  -10.50                                     SUBWAY # x6664               Restaurants/Dining           [subway]
3            14698       2016-04-25   -1.00  Simply Save TD EVERY DAY SAVINGS ACCOUNT xxxxx...                          Savings      [simply save]
4            14698       2016-04-25  -73.75                                    TICKETMASTER CA                    Entertainment    [ticket master]
5            14698       2016-04-25   -6.20                                     HAPPY ONE STOP                 Home Improvement                 NA
6            14698       2016-04-25   -7.74                                    BOOSTERJUICE-19               Restaurants/Dining            [juice]
7            14698       2016-04-25  -28.49                                    LEISURE-FIRST O                    Uncategorized                 NA
8            14698       2016-04-22   -3.16                                    MCDONALD'S #400               Restaurants/Dining       [mcdonald's]
9            14698       2016-04-22   -0.50  Simply Save TD EVERY DAY SAVINGS ACCOUNT xxxxx...                          Savings      [simply save]
10           14698       2016-04-22  -10.50                                     SUBWAY # x6664               Restaurants/Dining           [subway]
11           14698       2016-04-21  -19.87                                     TRAFALGAR ESSO                    Gasoline/Fuel             [esso]
12           14698       2016-04-21   -1.00  Simply Save TD EVERY DAY SAVINGS ACCOUNT xxxxx...                          Savings      [simply save]
13           14698       2016-04-20   -3.76                                    MCDONALD'S #400               Restaurants/Dining       [mcdonald's]
14           14698       2016-04-20   -1.00  Simply Save TD EVERY DAY SAVINGS ACCOUNT xxxxx...                          Savings      [simply save]
15           14698       2016-04-20  -40.00                                     TRAFALGAR ESSO                    Gasoline/Fuel             [esso]
16           14698       2016-04-19  -10.07                                     TRAFALGAR ESSO                    Gasoline/Fuel             [esso]
17           14698       2016-04-19   -5.21                                    TIM HORTONS #24               Restaurants/Dining  [tim hortons, rt]
18           14698       2016-04-19   -3.50  Simply Save TD EVERY DAY SAVINGS ACCOUNT xxxxx...                          Savings      [simply save]
19           14698       2016-04-18   -1.00  Simply Save TD EVERY DAY SAVINGS ACCOUNT xxxxx...                          Savings      [simply save]
20           14698       2016-04-18   -5.21                                    TIM HORTONS #24               Restaurants/Dining  [tim hortons, rt]
21           14698       2016-04-18  -22.57                                     WAL-MART #3170              General Merchandise               [rt]
22           14698       2016-04-18  -16.94                                    URBAN PLANET #1                   Clothing/Shoes     [urban planet]
23           14698       2016-04-18  -12.95                                     LCBO/RAO #0545               Restaurants/Dining                 NA
24           14698       2016-04-18  -13.87                                     TRAFALGAR ESSO                    Gasoline/Fuel             [esso]
25           14698       2016-04-18  -41.75                                     NON-TD ATM W/D             ATM/Cash Withdrawals                 NA
26           14698       2016-04-18   -4.19                                     SUBWAY # x6338               Restaurants/Dining           [subway]
27           14698       2016-04-15   -0.50  Simply Save TD EVERY DAY SAVINGS ACCOUNT xxxxx...                          Savings      [simply save]
28           14698       2016-04-15  -35.06                                       UNION BURGER               Restaurants/Dining           [burger]
29           14698       2016-04-15  -25.00                                     PIONEER STN #1                      Electronics          [pioneer]
 
     
    