Every time I run LSTM network with Keras in jupyter notebook, I got a different result, and I have googled a lot, and I have tried some different solutions, but none of they are work, here are some solutions I tried:
- set numpy random seed - random_seed=2017 from numpy.random import seed seed(random_seed)
- set tensorflow random seed - from tensorflow import set_random_seed set_random_seed(random_seed)
- set build-in random seed - import random random.seed(random_seed)
- set PYTHONHASHSEED - import os os.environ['PYTHONHASHSEED'] = '0'
- add PYTHONHASHSEED in jupyter notebook kernel.json - { "language": "python", "display_name": "Python 3", "env": {"PYTHONHASHSEED": "0"}, "argv": [ "python", "-m", "ipykernel_launcher", "-f", "{connection_file}" ] }
and the version of my env is:
Keras: 2.0.6
Tensorflow: 1.2.1
CPU or GPU: CPU
and this is my code:
model = Sequential()
model.add(LSTM(16, input_shape=(time_steps,nb_features), return_sequences=True))
model.add(LSTM(16, input_shape=(time_steps,nb_features), return_sequences=False))
model.add(Dense(8,activation='relu'))        
model.add(Dense(1,activation='linear'))
model.compile(loss='mse',optimizer='adam')
 
     
     
    