Among the many things we do with Postgres at work, we use it as a cache for certain kinds of remote requests. Our schema is:
CREATE TABLE IF NOT EXISTS cache (
key VARCHAR(256) PRIMARY KEY,
value TEXT NOT NULL,
ttl TIMESTAMP DEFAULT NULL
);
CREATE INDEX IF NOT EXISTS idx_cache_ttl ON cache(ttl);
This table does not have triggers or foreign keys. Updates are typically:
INSERT INTO cache (key, value, ttl)
VALUES ('Ethan is testing8393645', '"hi6286166"', sec2ttl(300))
ON CONFLICT (key) DO UPDATE
SET value = '"hi6286166"', ttl = sec2ttl(300);
(Where sec2ttl is defined as:)
CREATE OR REPLACE FUNCTION sec2ttl(seconds FLOAT)
RETURNS TIMESTAMP AS $$
BEGIN
IF seconds IS NULL THEN
RETURN NULL;
END IF;
RETURN now() + (seconds || ' SECOND')::INTERVAL;
END;
$$ LANGUAGE plpgsql;
Querying the cache is done in a transaction like this:
BEGIN;
DELETE FROM cache WHERE ttl IS NOT NULL AND now() > ttl;
SELECT value FROM cache WHERE key = 'Ethan is testing6460437';
COMMIT;
There are a few things not to like about this design -- the DELETE happening in cache "reads", the index on (edit: ASC is the default, thanks wargre!) plus the fact that we're using Postgres as a cache at all. But all of that would have been acceptable except that we've started getting deadlocks in production, which tend to look like this:cache.ttl is not ascending which makes it kind of useless,
ERROR: deadlock detected
DETAIL: Process 12750 waits for ShareLock on transaction 632693475; blocked by process 10080.
Process 10080 waits for ShareLock on transaction 632693479; blocked by process 12750.
HINT: See server log for query details.
CONTEXT: while deleting tuple (426,1) in relation "cache"
[SQL: 'DELETE FROM cache WHERE ttl IS NOT NULL AND now() > ttl;']
Investigating the logs more thoroughly indicates that both transactions were performing this DELETE operation.
As far as I can tell:
- My transactions are in
READ COMMITTEDisolation mode. - ShareLocks are grabbed by one transaction to indicate that it wants to mutate rows that another transaction has mutated (i.e. locked).
- Based on the output of an
EXPLAINquery, the ShareLocks should be grabbed by bothDELETEtransactions in physical order. - The deadlock indicates that both queries locked rows in a different order.
If all that is correct, then somehow some simultaneous transaction has changed the physical order of rows. I see that an UPDATE can move a row to an earlier or later physical position, but in my application, the UPDATEs always remove rows from consideration by the DELETEs (because they're always extending a row's TTL). If the rows were previously in physical order, and you remove one, then you're still left with physical order. Similarly for DELETE. We're not doing any VACUUM or any other operation which you might expect to reorder rows.
Based on Avoiding PostgreSQL deadlocks when performing bulk update and delete operations, I tried to change the DELETE queries to:
DELETE FROM cache c
USING (
SELECT key
FROM cache
WHERE ttl IS NOT NULL AND now() > ttl
ORDER BY ttl ASC
FOR UPDATE
) del
WHERE del.key = c.key;
However, I'm still able to get deadlocks locally. So generally, how can two DELETE queries deadlock? Is it because they're locking in an undefined order, and if so, how do I enforce a specific order?