I got the following numpy array that I converted to dataframe:
data =np.array([('210', 0.5316666570181647, 0.99102639737063),
                ('215', 0.5541666565152505, 0.9906073078204338),
                ('220', 0.5658333229211469, 0.9905192216775841),
                ('225', 0.6158333218035598, 0.9893290692391012),
                ('230', 0.10499999988824131, 0.9999143781512333),
                ('235', 0.061666665288309254, 0.9999999088637485),
                ('240', 0.061666665288309254, 0.9999999088637485),
                ('245', 0.061666665288309254, 0.9999999088637485)], 
                dtype=[('index', '|O'), ('time', '<f8'), ('min_value', 
                '<f8')])
df = pd.DataFrame(data)
Now I need to get the rows that only have min_values less than 1.0 I tried the following but it didn't work!
minf[minf.min_value < 1] 
 
    